Перевод: со всех языков на все языки

со всех языков на все языки

пульт центра связи

  • 1 пульт центра связи

    Универсальный русско-английский словарь > пульт центра связи

  • 2 CCC

    1. capacitor-coupled clamp - фиксатор с ёмкостной связью;
    2. cause-consequence chart - карта причин и последствий (отказов);
    3. central computer complex - центральный вычислительный комплекс;
    4. central control console - центральный пульт управления;
    5. ceramic chip carrier - керамический кристаллодержатель;
    6. chlorcholine [chlorocholine] chloride - хлорхолинхлорид;
    7. closed-cycle cooler - криогенная установка замкнутого типа;
    8. command control center - главный КП корабля;
    9. command control console - пульт управления командами;
    10. command, control and communications - командование, управление и связь;
    11. common control circuit - общая схема управления;
    12. communications center console - пульт центра связи;
    13. communications channel capacity - емкость канала связи;
    14. communications control center - центр управления связью;
    15. communications control console - пульт управления связью;
    16. complex control center - центр комплексного управления; центр управления комплексом;
    17. computer communications console - пульт связи с ЭВМ;
    18. computer communications converter - автоматизированный связной преобразователь;
    19. controller checkout console - пульт проверки блока управления;
    20. convert character code - код преобразования знака;
    21. covalently closed circular - циклический ковалентно замкнутый;
    22. cross-current conductance - поперечная электропроводность;
    23. cyclic check character - символ циклической проверки;
    24. cycocel (2-chloroethyl) trimethyl-ammonium chloride - цикоцель; хлорхолинхлорид

    Англо-русский словарь технических аббревиатур > CCC

  • 3 CCC

    CCC, ceasefire control commission
    ————————
    CCC, central computer center
    ————————
    CCC, central computer complex
    ————————
    CCC, classified control clerk
    ————————
    CCC, combat control center
    центр управления боевыми действиями; центр боевого управления
    ————————
    CCC, combined coordinating committee
    ————————
    CCC, command and control center
    ————————
    CCC, command control console
    пульт командного управления [наведения]
    ————————
    CCC, communications center console
    ————————
    CCC, communications control center
    центр [пункт] управления связью
    ————————
    CCC, communications control console
    ————————
    CCC, complex control center
    центр [пункт] управления комплексом
    ————————
    CCC, component change control
    ————————
    CCC; CC & C, command, control, and communications
    командование [руководство], управление и связь; оперативное управление и связь

    English-Russian dictionary of planing, cross-planing and slotting machines > CCC

  • 4 communications center console

    Военный термин: пульт центра связи

    Универсальный англо-русский словарь > communications center console

  • 5 communications center console

    CCC, communications center console

    English-Russian dictionary of planing, cross-planing and slotting machines > communications center console

  • 6 ACP

    1. adaptive control process - процесс адаптивного управления;
    2. advanced computational processor - усовершенствованный вычислительный процессор;
    3. aerospace computer program - программа создания ЭВМ авиационно-космического применения;
    4. Agricultural Conservation Program - Программа помощи фермерам в сохранении почвенных, водных и лесных ресурсов;
    5. airborne command post - воздушный командный пункт;
    6. aircraft communications procedure - технология осуществления самолетной связи;
    7. alignment control panel - пульт управления центровкой;
    8. allied communications pamphlet - справочник по связи объединенных вооруженных сил НАТО;
    9. allied communications publication - инструкция по связи объединенных вооруженных сил НАТО;
    10. alternate command post - запасный командный пункт; ЗКП;
    11. analyzer control processor - управляющий процессор анализатора;
    12. ancillary control processor - вспомогательный управляющий процессор;
    13. area command post - командный пункт района;
    14. armament control panel - пульт управления вооружением;
    15. astronaut control panel - пульт управления космонавта;
    16. attack center panel - приборная панель главного командного пункта корабля; приборная панель поста атаки;
    17. attitude control program - программа системы управления ориентацией;
    18. audio center equipment - аппаратура акустического центра;
    19. auxiliary command post - запасный командный пункт, ЗКП;
    20. auxiliary control panel - вспомогательная панель управления; запасный пульт управления;
    21. azimuth change pulses - импульсы, содержащие данные об изменении азимута

    Англо-русский словарь технических аббревиатур > ACP

  • 7 CC

    1. calibration curve - градуировочная кривая;
    2. call on carry - вызов по переносу;
    3. card column - колонка перфокарты;
    4. carriage control - управление кареткой;
    5. carrier current - ток несущей;
    6. carrying capacity - пропускная способность;
    7. cation conductivity - катионная электропроводимость;
    8. center-to-center - межцентровое расстояние;
    9. central computer - центральная ЭВМ;
    10. central console - центральная аппаратурная стойка;
    11. central control - центральное управление; управление из центра; центральное управляющее устройство; центральный пульт управления;
    12. centrifugal charging - центробежная подпитка;
    13. ceramic capacitor - керамический конденсатор;
    14. certificate of conformance - сертификат соответствия техническим условиям;
    15. chain command - канальная команда с признаком цепочки;
    16. channel capacity - ёмкость канала;
    17. channel controller - контроллер канала;
    18. chief controller - главный контроллер;
    19. circuit closing - замыкание цепи;
    20. classification code - классификацио нный код;
    21. classified contract - секретный контракт;
    22. close coupling - сильная связь;
    23. closed circuit - замкнутая схема;
    24. clutter cancellation - подавление фоновых помех;
    25. coarse control - грубая регулировка; грубое регулирование;
    26. code converter - преобразователь кода;
    27. coefficient of correlation - коэффициент корреляции;
    28. coincident current - ток схемы совпадения;
    29. color code - цветовой код;
    30. color contrast - цветовой контраст;
    31. combinatorial circuit - комбинаторная схема; комбинационная схема;
    32. combined carbon - связанный углерод;
    33. combined cycle - комбинированный цикл;
    34. command and control - командование и управление; управление и наведение;
    35. Command center - командный пункт; КП;
    36. command computer - ЭВМ системы командования; командная ЭВМ;
    37. command console - командный пульт управления;
    38. common carrier - общая несущая;
    39. common collector - общий коллектор;
    40. common communicator - общий переключатель каналов;
    41. Common Council - муниципалитет;
    42. common-collector transistor connection - включение (транзистора) по схеме с общим коллектором;
    43. communications center - центр связи;
    44. communications central - центральная станция связи;
    45. communications chief - начальник связи;
    46. communications computer - связная ЭВМ; связной процессор;
    47. communications control - управление связью; управление передачей данных;
    48. communications controller - контроллер связи, связной контроллер;
    49. compass course - компасный курс, курс по компасу;
    50. complex-conjugate - комплексно-сопряжённый;
    51. component check - проверка компонентов;
    52. component cooling - охлаждение компонентов;
    53. computer calculator - электронный калькулятор;
    54. computer complex - вычислительный комплекс, комплекс ЭВМ;
    55. computer-controlled - управляемый с помощью ЭВМ;
    56. concentric cable - коаксиальный кабель;
    57. condition code - код условия;
    58. conducting channel - проводящий канал;
    59. conductive coating - проводящее покрытие;
    60. conductivity cell - кондуктометрическая ячейка;
    61. confidence coefficient - доверительный уровень;
    62. conformal coating - однородное покрытие;
    63. connecting circuit - соединительная схема;
    64. constant current - неизменяющийся постоянный ток; стабилизированный ток;
    65. continuity criterion - критерий непрерывности;
    66. continuous current - постоянный ток;
    67. control center - центр управления;
    68. control circuit - схема управления; цепь управления;
    69. control computer - управляющая ЭВМ;
    70. control console - пульт управления;
    71. cooling coil - охлаждающая катушка индуктивности;
    72. coordinate converter - преобразователь координат;
    73. correction for continuity - поправка на непрерывность;
    74. cost code - код стоимости;
    75. cost contract - контракт с возмещением затрат;
    76. counter countermeasures - помехозащищенность; средства обеспечения помехозащищенности; радиоэлектронная защита;
    77. critical concentration - критическая концентрация;
    78. critical crack - критическая трещина;
    79. cross correlation - взаимная корреляция; кросс-корреляция;
    80. cross couple - перекрестная связь;
    81. cubic centimeter - кубический сантиметр;
    82. cyclic check - периодический контроль;
    83. "следующее слово шифром"

    Англо-русский словарь технических аббревиатур > CC

  • 8 TAC

    TAC, Tactical Air Command
    тактическое авиационное командование, ТАК
    ————————
    TAC, tactical air control
    управление [наведение] ТА
    ————————
    TAC, tactical air controller
    начальник центра управления ТА; офицер управления действиями ТА
    ————————
    TAC, tactical airlift center
    ————————
    TAC, tactical assignment console
    ————————
    TAC, tactical coordinator
    координатор по тактическим вопросам, офицер по координации тактических вопросов
    ————————
    TAC, tactical CP
    ————————
    TAC, tank tire control
    ————————
    TAC, target acquisition center
    центр [пункт] обнаружения целей
    ————————
    TAC, target acquisition console
    ————————
    TAC, Technical Advisory Committee
    ————————
    TAC, technical applications center
    ————————
    TAC, technical area coordinator
    ————————
    TAC, telemetry and control
    ————————
    TAC, terminal area control
    ————————
    TAC, terrain analysis center
    центр [пункт] оценки местности
    ————————
    TAC, Test Advisory Committee
    ————————
    TAC, Theater Airlift Command
    ————————
    TAC, theater Army communications (system)
    ————————
    TAC, tracking accuracy control
    ————————
    TAC, training aids center
    ————————
    TAC, training alarm controller
    ————————
    TAC, trouble analysis chart
    схема анализа неисправностей [повреждений]
    ————————
    TAC, type of activity code

    English-Russian dictionary of planing, cross-planing and slotting machines > TAC

  • 9 center

    aerodynamic center
    аэродинамический фокус
    air communication center
    центр обеспечения воздушной связи
    aircraft center line
    осевая линия воздушного судна
    aircraft center - of - gravity
    центровка воздушного судна
    aircrew training center
    центр летной подготовки
    airfoil center line
    средняя линия аэродинамического профиля
    air traffic control center
    диспетчерский центр управления воздушным движением
    align the aircraft with the center line
    устанавливать воздушное судно по оси
    area control center
    районный диспетчерский центр управления движением на авиатрассе
    area forecast center
    центр зональных прогнозов
    barrette center line
    линия центрального ряда линейных огней
    bottom dead center
    нижняя мертвая точка
    center engine
    средний двигатель
    center instrument panel
    средняя панель приборной доски
    center lift
    центр подъемной силы
    center line
    ось
    center line approach
    заход на посадку по осевой линии
    center of air pressure
    центр аэродинамического давления
    center of depression
    центр низкого давления
    center of force
    центр приложения силы
    center of gravity
    центр тяжести
    center of mass
    центр масс
    center of pressure
    центр давления
    center pedestal
    центральный пульт
    center section panel
    панель центроплана
    center the autopilot
    центрировать автопилот
    center the wiper
    центрировать щетку
    center wing
    центроплан
    center wing section
    центроплан крыла
    center zero scale
    двусторонняя шкала
    collecting center
    центр сбора информации
    control center
    диспетчерский центр
    elastic center
    центр жесткости
    entry switching center address
    адрес входного центра коммутации
    flight information center
    центр полетной информации
    flight-test center
    летно-испытательная станция
    flow control center
    диспетчерский центр управления потоком воздушного движения
    flying training center
    центр летной подготовки
    forecast center
    центр прогнозов
    identify the center line
    обозначать осевую линию
    keep the ball centered
    держать шарик в центре
    lock over center
    запираться
    message center
    центр обработки донесений
    meteorological center
    метеорологический центр
    oceanic area control center
    океанический районный диспетчерский центр
    octave-band center frequency
    средняя частота октавной полосы
    on aircraft center line
    по оси воздушного судна
    pressure center
    центр давления
    radar information center
    центр передачи радиолокационной информации
    radar processing center
    центр обработки радиолокационной информации
    regional control center
    региональный диспетчерский центр
    rescue coordination center
    координационный центр по спасанию
    runway center line
    ось ВПП
    search and rescue center
    центр поиска и спасания
    service center
    панель обслуживания
    stand center line
    ось места стоянки
    taxiway center liner
    ось рулежной дорожки
    top dead center
    верхняя мертвая точка
    transmitting center address
    адрес передающего центра
    upper area control center
    диспетчерский центр управления верхним районом
    upper information center
    центр информации для верхнего района
    weather message switching center
    коммутационный центр метеорологических донесений
    windshield center post
    центральная стойка лобового стекла
    World area forecast center
    Всемирный центр зональных прогнозов

    English-Russian aviation dictionary > center

  • 10 center

    aerodynamic center
    аэродинамический фокус
    air communication center
    центр обеспечения воздушной связи
    aircraft center line
    осевая линия воздушного судна
    aircraft center - of - gravity
    центровка воздушного судна
    aircrew training center
    центр летной подготовки
    airfoil center line
    средняя линия аэродинамического профиля
    air traffic control center
    диспетчерский центр управления воздушным движением
    align the aircraft with the center line
    устанавливать воздушное судно по оси
    area control center
    районный диспетчерский центр управления движением на авиатрассе
    area forecast center
    центр зональных прогнозов
    barrette center line
    линия центрального ряда линейных огней
    bottom dead center
    нижняя мертвая точка
    center engine
    средний двигатель
    center instrument panel
    средняя панель приборной доски
    center lift
    центр подъемной силы
    center line
    ось
    center line approach
    заход на посадку по осевой линии
    center of air pressure
    центр аэродинамического давления
    center of depression
    центр низкого давления
    center of force
    центр приложения силы
    center of gravity
    центр тяжести
    center of mass
    центр масс
    center of pressure
    центр давления
    center pedestal
    центральный пульт
    center section panel
    панель центроплана
    center the autopilot
    центрировать автопилот
    center the wiper
    центрировать щетку
    center wing
    центроплан
    center wing section
    центроплан крыла
    center zero scale
    двусторонняя шкала
    collecting center
    центр сбора информации
    control center
    диспетчерский центр
    elastic center
    центр жесткости
    entry switching center address
    адрес входного центра коммутации
    flight information center
    центр полетной информации
    flight-test center
    летно-испытательная станция
    flow control center
    диспетчерский центр управления потоком воздушного движения
    flying training center
    центр летной подготовки
    forecast center
    центр прогнозов
    identify the center line
    обозначать осевую линию
    keep the ball centered
    держать шарик в центре
    lock over center
    запираться
    message center
    центр обработки донесений
    meteorological center
    метеорологический центр
    oceanic area control center
    океанический районный диспетчерский центр
    octave-band center frequency
    средняя частота октавной полосы
    on aircraft center line
    по оси воздушного судна
    pressure center
    центр давления
    radar information center
    центр передачи радиолокационной информации
    radar processing center
    центр обработки радиолокационной информации
    regional control center
    региональный диспетчерский центр
    rescue coordination center
    координационный центр по спасанию
    runway center line
    ось ВПП
    search and rescue center
    центр поиска и спасания
    service center
    панель обслуживания
    stand center line
    ось места стоянки
    taxiway center liner
    ось рулежной дорожки
    top dead center
    верхняя мертвая точка
    transmitting center address
    адрес передающего центра
    upper area control center
    диспетчерский центр управления верхним районом
    upper information center
    центр информации для верхнего района
    weather message switching center
    коммутационный центр метеорологических донесений
    windshield center post
    центральная стойка лобового стекла
    World area forecast center
    Всемирный центр зональных прогнозов

    English-Russian aviation dictionary > center

  • 11 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 12 power management

    1. энергоменеджмент
    2. управление электропитанием
    3. контроль потребления электроэнергии

     

    контроль потребления электроэнергии
    контроль энергопотребления


    [Интент]

    Тематики

    Синонимы

    EN

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > power management

См. также в других словарях:

  • Модернизация — (Modernization) Модернизация это процесс изменения чего либо в соответствии с требованиями современности, переход к более совершенным условиям, с помощью ввода разных новых обновлений Теория модернизации, типы модернизации, органическая… …   Энциклопедия инвестора

  • Копенгагенский метрополитен — Копенгагенский метрополитен …   Википедия

  • ГОСТ Р 53953-2010: Электросвязь железнодорожная. Термины и определения — Терминология ГОСТ Р 53953 2010: Электросвязь железнодорожная. Термины и определения оригинал документа: 39 (железнодорожная) телеграфная сеть: Сеть железнодорожной электросвязи, представляющая собой совокупность коммутационных станций и узлов,… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 24214-80: Связь громкоговорящая. Термины и определения — Терминология ГОСТ 24214 80: Связь громкоговорящая. Термины и определения оригинал документа: 29. Абонент громкоговорящей связи Абонент Лицо, пользующееся громкоговорящей связью Определения термина из разных документов: Абонент громкоговорящей… …   Словарь-справочник терминов нормативно-технической документации

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 53326-2009: Техника пожарная. Установки пожаротушения роботизированные. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 53326 2009: Техника пожарная. Установки пожаротушения роботизированные. Общие технические требования. Методы испытаний оригинал документа: 3.15 блок питания: Устройство для преобразования переменного напряжения промышленной… …   Словарь-справочник терминов нормативно-технической документации

  • канал — 3.5.2 канал: Водовод незамкнутого поперечного сечения в виде искусственного русла в грунтовой выемке и/или насыпи. Источник: СО 34.21.308 2005: Гидротехника. Основные понятия. Термины и определения 3.6 канал: Вытянутое, искусственно ограниченное… …   Словарь-справочник терминов нормативно-технической документации

  • Нефтяная вышка — (Oil derrick) Устройство, предназначение и использование нефтяных вышек Информация об устройстве, назначении, описании и использовании нефтяных вышек Содержание — это разрушения с помощью специальной техники. Различают два вида бурения:… …   Энциклопедия инвестора

  • устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52064-2003: Подъемники с рабочими платформами. Термины и определения — Терминология ГОСТ Р 52064 2003: Подъемники с рабочими платформами. Термины и определения оригинал документа: 38 автомобильный подъемник Подъемник, смонтированный на автомобильном шасси Определения термина из разных документов: автомобильный… …   Словарь-справочник терминов нормативно-технической документации

  • Телевизионная станция —         комплекс устройств и сооружений, служащих для подготовки программ телевизионного вещания или (и) их передачи посредством радиоволн (с целью последующего приёма Телевизорами). Т. с. одно из основных звеньев телевизионной передающей сети… …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»